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Abstract
The hallmark of bipolar disorder is a clinical course of recurrent manic and depressive symptoms of varying severity
and duration. Mathematical modeling of bipolar disorder holds the promise of an ability to personalize diagnoses, to
predict future mood episodes, to directly compare diverse datasets, and to link basic mechanisms to behavioral data.
Several modeling frameworks have been proposed for bipolar disorder, which represent competing hypothesis about
the basic framework of the disorder. Here, we test these hypotheses with self-report assessments of mania and
depression symptoms from 178 bipolar patients followed prospectively for 4 or more years. Statistical analysis of the
data did not support the hypotheses that mood arises from a rhythmic process or multiple stable states (e.g., mania or
depression) or that manic and depressive symptoms are highly anti-correlated. Alternatively, it is shown that bipolar
disorder could arise from an inability for mood to quickly return to normal when perturbed. This latter concept is
embodied by an affective instability model that can be personalized to the clinical course of any individual with
chronic disorders that have an affective component.

Introduction
Bipolar disorder (BP) is a chronic illness of recurrent

episodes of mania and depression, affecting 2.4% of the
adult population1,2. This disorder is classified according to
diagnostic criteria in the Diagnostic and Statistical Man-
ual 5th Edition (DSM-5)3, which are largely based on
expert consensus through empirical clinical observations.
These criteria lose information on sub-syndromal symp-
toms and the dynamic nature of the illness beyond simple
observations of episodic pattern. There is much interest in
further quantifying BP through mathematical modeling.
Several models have recently been proposed for BP.

They are built upon the following hypotheses:
Bipolar is intrinsically rhythmic: A periodic assumption

postulates mood is driven by an internal timekeeping
mechanism. As a result, mood cycles through mania and

depressive episodes rhythmically or periodically. Periodic
models are readily available for BP4–9.
Bipolar is multistable: A multistable assumption argues

mood in BP tends to distinct mood states (e.g., mania and
depression) which sustain mood at severe levels. Multi-
stability is captured mathematically with stable points or
attractors in dynamical systems7,8,10–12.
Bipolar is one-dimensional: A one-dimensional

assumption supposes mood is a spectrum with mania
and depression on opposite ends (i.e. the two “poles” in bi-
polar). Manic or depressive symptoms arise only in the
absence of the other. Many models of mood in BP use a
one-dimensional assumption4,5,9,11,13.
Testing these hypotheses could have major implications

for the study of BP. The multistable hypothesis suggests
that environmental or internal perturbations, “stress” or
“noise,” are what triggers a mood episode. Thus, if these
could be minimized, mood would stay in its current state
indefinitely. Likewise, when the next episode is, or its
duration, is fundamentally unpredictable. The rhythmic
hypothesis suggests the opposite: that mood transitions
could occur independently of these perturbations and that
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mood episodes are fundamentally predictable and have a
characteristic duration. A third hypothesis is that mood
episodes are triggered by these perturbations, but that
these mood states are not “sustaining” or that there is an
effective maximal time by which the mood episode would
ultimately end, perhaps because of an exponential return
to a baseline mood.
The one-dimensional hypothesis suggests that any

increase in manic symptoms means a decrease in
depressive symptoms. Even if a model allows for two
separate variables, it could “attract” to a state where this
relationship between manic and depressive symptoms is
true. An alternative is to assume manic and depressive
scores are independent. A middle ground exists where
mania and depression are “correlated” (positively or
negatively).
In this study, we aimed to (i) formally test the validity of

these hypotheses at the patient-level, and subsequently (ii)
establish a mathematical framework for clinical course in
BP. In what follows, patient-level statistical tests are
combined across patients to examine collective evidence
of each hypothesis. In the process, we reveal evidence of a
new model that describes mood course in BP as arising
from extreme instability in manic and depressive symp-
toms. We then show how this model can be personalized
to the mood course of any individual with a chronic
condition wherein mood and affective symptoms are
present (not just bipolar patients), thereby providing a
quantitative phenotype to study biological mechanisms of
disorders that manifest, at least in part, with affective
symptoms.

Materials and methods
Data
The primary dataset, the bimonthly dataset, was col-

lected from 178 BP individuals followed prospectively for
at least 4 years in the Prechter Longitudinal Study of
Bipolar Disorder at the University of Michigan14. An
Altman Self-Reported Mania scale (ASRM)15 and the
Patient Health Questionnaire for Depression (PHQ9)16

were completed at 2 month intervals. On average across
the individuals, 3.5% of PHQ9 scores were missing and
0.55% of ASRM were missing. Of the 178 individuals, 138
were BPI, 12 were BP not otherwise specified, and 28 were
BPII; 134 were female; 153 individuals were white, 6 black
or African-American, 2 Asian, 9 more than one race, and
8 patients of unknown race; 166 individuals were not-
Hispanic, 5 Hispanic, and 7 of unknown ethnicity. Indi-
viduals were on average 42.3± 12.2 (±standard deviation
[SD]) years of age at the initial interview for the Prechter
study. The UM IRB approved recruitment, assessment,
and research procedures (HUM606).
A second dataset, the weekly dataset, was included for

two statistical tests that depend on how often mood was

sampled. This dataset was collected on BP individuals (N
= 15) from the Prechter Study with at least 24 surveys
scores on the Young Mania Ratings Scale (YMRS)17 and
the Structured Interview Guide from the Hamilton
Depression Rating Scale (SIGHD)18, administered weekly
by trained interviewers. On average across the individuals,
9.2% of SIGHD scores were missing and 9.7% of YMRS
score were missing. Of these patients, 9 were BPI and 6
were BPII; 12 were female; 9 were white, 1 Asian, 4 black
or African-American, and 1 of unknown ethnicity; 15
were not-Hispanic. They were on average 39.9± 9.4
(±SD) years of age at the initial interview. Ten patients
had both bimonthly and weekly data.

Statistical approach
Because the hypotheses of interest are about BP at the

patient-level, they should be tested with patient-level data.
Since patient-level data is limited and highly variable,
patient-level tests may not have sufficient statistical power
to reject hypotheses. Testing hypotheses on aggregated
data across patients, however, can lead to wrong conclu-
sions about patient-level trends. To overcome this lim-
itations, we perform statistical tests on patient-level data,
but then aggregate statistics and/or test results across
patients. Significance was considered an alpha level of
0.05, and the analysis was performed in Matlab (Math-
works; Natick, MA) unless otherwise specified.

Patient-level statistics
Testing a one-dimensional hypothesis
Kendall rank correlation was measured between con-

current depressive and manic symptoms (bimonthly
dataset). Rank correlation measures the degree to which
an increase in depressive symptoms is accompanied by an
increase in mania and similarly, an increase in manic
symptoms is accompanied by an increase in depression.
Because a one-dimensional hypothesis ignores mixed
states, we also compared risk for mania (ASRM score ≥ 6)
while depressed (PHQ9 score ≥ 10) versus not depressed
(PHQ9 score< 10) (bimonthly dataset). We ignored ill-
defined rank correlations (an individual’s survey scores
are all identical) and ill-defined risk values (an individual
was either never depressed or never not depressed).

Testing a rhythmic hypothesis
An individual’s scores were transformed to the fre-

quency domain using nonparametric spectral estimation
based on Thomson’s multitaper approach19. We then
looked for significant oscillation frequencies using
Thomson’s harmonic F test, from which we could recover
P-values for each frequency (Null hypothesis i: An indi-
vidual’s manic or depressive scores do not oscillate at a
specified frequency; bimonthly and weekly datasets).
Thirty frequencies were tested, equally spaced between 1/
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24 and 1/2 of the sampling frequency, i.e., between 1/4
and 3 cycles per year for the bimonthly dataset and 1/24
and 1/2 cycles per week for the weekly dataset. Spectral
estimation was performed in R (R Foundation for Statis-
tical Software, Vienna, Austria) using the multitaper
package with seven Slepian tapers, a time bandwidth of
four, adaptive estimation, and removing the estimated
mean of the time series using Slepian tapers. This analysis
required contiguous data, so the R function na.approx
(found in the zoo package) filled in missing data via an
interpolation method.

Testing a multistable assumption
To test for multiple states, we looked for survey scores

with probability density functions that had multiple
modes, i.e., particular mood scores that are relatively
more common than nearby scores20. A Hartigan’s dip test
was used to measure deviation from unimodality21 (null
hypothesis ii: an individual’s manic or depressive scores
has a unimodal distribution; bimonthly dataset). Since a
Hartigan’s dip test requires continuous data and survey
scores are discrete, we added a uniform random variable
to each score and applied the dip test to these modified
scores.

Testing our affective instability model
We tested the validity of our model by evaluating

whether it fits survey scores significantly worse than data
sampled from the model, i.e. whether we can distinguish
between actual data and data simulated from the model.
This approach does not favor model complexity: even if a
complex model fits the data better, it is not guaranteed
that the model fits the data better than simulated data.
This testing relied on two types of goodness-of-fit tests,
following a method to validate models for financial data
described by Ait-Sahalia et al.22 and Fan23 (see Supple-
mentary Appendix for details). The first goodness-of-fit
test evaluated how well certain probability density func-
tions fit survey scores. (Null hypothesis iii: an individual’s
manic or depressive scores are drawn from a specified
probability density function;monthly dataset). The second
goodness-of-fit test evaluated how well certain transition
distributions fit sequences of mood scores (Null hypoth-
esis iv: an individual’s sequence of manic or depressive
scores are drawn from a specified transition distribution;
weekly dataset). For the latter test, the weekly dataset was
used, since bimonthly scores were not sampled frequently
enough to accurately estimate parameters. We measured
goodness-of-fit to the density function and transition
distribution defined by our model. To show these tests
have enough statistical power to reject models, we also
tested two common stochastic differential equation
models: an Ornstein-Uhlenbeck process and a Cox-
Ingersoll Ross process24. Since our model is unistable

under no noise, these tests also serve to further test
multistability.

Population-level statistics
Statistical tests were aggregated to examine collective

evidence of each patient-level null hypothesis. For tests
with P-values, we followed Loughin25, calculating a mean
P-value across patients for each test and testing for sig-
nificance by comparing it to the mean P-value of the same
number of independent uniform random variables (Null
hypothesis I: the null hypothesis of a particular test holds
across patients, and tests are independent between
patients; bimonthly and weekly datasets). Under this
approach, a hypothesis would not be rejected with one P-
value of 0.2, but would be rejected with one-hundred P-
values of 0.2.
Since multiple frequencies are tested (leading to a

higher chance for Type I errors) and mood could oscillate
at different frequencies between patients, we also calcu-
lated the minimum of the P-values across the 30 fre-
quencies for each individual. These minima were averaged
and compared to a similar statistic assuming P-values
across individuals and frequencies were independent
uniform random variables. (Null hypothesis II: the null
hypothesis of a Thomson’s F tests holds across patients and
frequencies, and tests are independent between frequencies
and patients; bimonthly and weekly datasets).
To clearly associate a population-level statistical test to

a reported P-value, we use scalars P̂i, P̂ii, P̂iii; P̂iv to denote
P-values recovered under the population-level null
hypothesis I, which in turn are associated with null
hypotheses i, ii, iii, or iv. In addition, ~Pi denotes the P-
value recovered under population-level null hypothesis II.

Parametric study
To analyze our affective instability model, we estimated

mean duration of mood episodes and percent time in a
mood state for certain parameters. To remove the
dependence of these estimates on initial mood values and
random noise, we followed a common strategy in sto-
chastic simulation by simulating the affective instability
model for a sufficiently long period of time with a suitable
warm-up or burn-in period26. With mood episodes lasting
on a scale of weeks to months, we chose to simulate the
model for 1100 simulated life-years with initial manic/
depressive mood values of 0.1 and warm-up period of 100
years, storing daily samples of mood for only the last
1000 simulated life-years. We are in no way assuming that
individuals live for 1000 years, but use this value simply to
remove any dependence on initial conditions and random
noise.
Because mood is continuous in the affective instability

model, threshold values of mood were chosen to separate
mood into states. Because mood is also dimensionless, any
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threshold value can be used and gains an interpretation
when compared to other parameters and when mood is
scaled to match a survey. So, we chose a threshold value of
3 to define mood states:

● Euthymia: manic and depressive variables less than 3;
● Mania: manic variable greater than 3 and a depressive

variable less than 3;
● Depression: manic variable less than 3 and a

depressive variable greater than 3; and
● Mixed State: manic and depressive variables greater

than 3.
Manic, depressive, and mixed episodes were defined as

periods in the corresponding mood state lasting at least a
week to agree with current DSM guidelines; euthymic
episodes were periods in-between mood episodes.

Results
Testing conventional hypotheses
One-dimensional
A one-dimensional hypothesis would mean that indi-

viduals are never both manic and depressed (Fig. 1a, b).
However on average, individuals in our dataset have a 15%
risk for mania (ASRM score ≥ 6) while depressed
(PHQ9 score ≥ 10) (Fig. 1c). Interestingly, an individual
has only a 23% risk for mania while not depressed. The
significant risk for mania while depressed goes against the
one-dimensional hypothesis.
To test this further, because a one-dimensional

hypothesis requires that high manic scores would occur
only with low depressive scores and high depressive
scores occur only with low manic scores, a parametric
plot of manic and depressive survey scores would appear
near a one-dimensional curve in each individual (Fig. 1b).
We measured Kendall’s rank correlation between
depressive and manic scores for each individual (Fig. 1d)
to tell if mania and depression are negatively correlated
(i.e. high manic scores are found with low depressive
scores and vice versa), or positively correlated,
which would lead to mixed episodes. The rank
correlation was on average −0.13 across individuals and
ranged from −0.60 to 0.75. While some individuals (e.g.,
Person 1 in Fig. 1b) showed a negative correlation close to
1, this was not typical. Positive correlation for some
individuals further contradicts the idea that mania and
depression are mutually-exclusive and the one-
dimensional hypothesis.

Rhythmic
Under a rhythmic assumption, an individual’s mood

scores transformed to a frequency domain peak around a
particular frequency (Fig. 2a). We tested frequencies for
significance and combined these tests across individuals
into mean P-values, leading to equivocal evidence of
rhythmicity (Fig. 2b). Near the fundamental frequencies

(the reciprocal of the observation period), mean P-values
were low enough across patients to be significant for both
datasets. However, the fundamental frequency should be
significant, since spectral estimation requires repeating
the data every observation period. For the weekly dataset,
mean P-values were not low enough to suggest mood
oscillates at any other frequencies.
For the bimonthly data, mean P-values were low enough

across patients to suggest manic symptoms oscillate at
1.13 and/or 1.78 cycles per year (P̂i = 0.028 and 0.020),
but not depressive symptoms (P̂i = 0.47 and 0.63), and to
suggest depressive symptoms oscillate at 2.53 and/or 2.72
cycles per year (P̂i = 0.012 and 0.017), but not manic
symptoms (P̂i = 0.12 and 0.34). Manic and depressive
symptoms might thus oscillate at different frequencies
that may not correspond to any biological (e.g. 4 week
periods) or seasonal oscillation (e.g. one or six month
periods). However, we tested 30 frequencies for sig-
nificance, which increases the possibility of falsely con-
cluding a frequency is significant when it is not. When we
correct for testing multiple frequencies and allow mood to
oscillate at different frequencies between individuals, we
find insufficient evidence to suggest that manic or
depressive symptoms oscillate in the weekly or monthly
datasets (~Pi > 0.19). In sum, it is unclear if manic and
depressive symptoms oscillate from our datasets.

Multistable
Under a multistable assumption, an individual has

multiple mood values that are relatively more stable than
nearby mood values and hence would spend relatively
more time around these values than nearby values. This
feature would manifest as multiple modes in its prob-
ability distribution, where each mode would represent a
mood value relatively more stable than nearby moods
(Fig. 3a). So, if we determined that the data allowed us to
reject a unimodal distribution, then we could conclude
that a multistable model was appropriate. Combining
tests across patients, we could not reject unimodal dis-
tribution for bimonthly manic or depressive symptoms (
P̂ii > 0.50; Fig. 3b).

An alternative hypothesis for mood in BP
Not being able to reject unimodality, we questioned if a

model with only one stable point (in the absence of noise)
could explain the mood data. With goodness-of-fit tests,
we determined if we could distinguish between actual
mood data and data sampled from three unistablemodels:
our affective instability described below and two popular
models from finance, an Orstein-Unhlenbeck model and
Cox-Ingersoll-Ross model. On average, bimonthly manic
symptoms fit the density function associated with our
affective instability model as well as 49% of sampled data,
and bimonthly depressive symptoms fit the density
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function associated with our model as well as 44% of
sampled data (Fig. 4). As a result, we did not find a sig-
nificant difference between bimonthly manic symptoms
and data simulated from our model (P̂iii = 0.29). Even
though the model did as well as 44% of sampled data, we
could find a significance difference between bimonthly
depressive scores and data sampled from our model (P̂iii

= 0.003). However, agreement between model and data
was much higher for the affective instability model than
for density functions associated with the other two
models, where we could find significant differences in all
cases (P̂iii < 1e-9).

We also tested if sequences of weekly manic and
depressive symptoms could fit transition distributions (i.e.
the distribution function for a mood value at some point
in time conditional on a preceding value) associated with
each model as well as simulated data. On average, weekly
manic symptoms fit the transition distribution associated
with our model as well as 49% of sampled data, and
weekly depressive symptoms fit the density function
associated with our model as well as 46% of sampled data
(Fig. 4). Hence, we did not find a significant difference
between sequences of weekly manic symptoms and
sequences sampled from our model (P̂iii = 0.46) or

Fig. 1 Testing a one-dimensional hypothesis. a Depressive and manic surveys were collected bimonthly in individuals with BP. Mood is highly
variable and only a limited amount of data is available on each individual, so patient-level hypotheses cannot be formally tested from visual
inspection of mood course alone. b Manic scores were plotted against concurrent depression scores. If mood is one-dimensional, concurrent manic
and depressive symptoms for all patients would have been plotted near a one-dimensional curve and depressive symptoms would never arise with
manic symptoms, indicated by negative correlation between the two symptom types. c Average risk for mania (ASRM score≥ 6) across individuals
was as high as 15% when depressed (PHQ9 score≥ 10), close to the 23% risk for mania when not depressed. d Rank correlation was measured in 178
patients to evaluate the degree to which manic symptoms were negatively correlated with depressive symptoms. Persons 1–3 were chosen to
illustrate the range of rank correlations from negative to near-zero to positive
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Fig. 2 Testing a rhythmic hypothesis. a Mood scores were transformed into the frequency domain using spectral density estimation. A rhythmic
mood course would result in a significant peak in the spectral density. b Frequencies were tested for significance and then the resulting P-values
were averaged across patients to evaluate the collective evidence that depressive and manic scores in the weekly (N = 178) and bimonthly (N = 15)
datasets oscillate at a particular frequency. Significance is a mean P-value that dips below the dashed lines, which mark 5th quantiles for the mean of
N uniform random variables between 0 and 1 with N = 178 for the bimonthly dataset and N = 15 for the weekly dataset

Fig. 3 Testing a multistable hypothesis. a Histograms were generated from bimonthly samples of depressive and manic symptoms. A multistable
assumption leads to multimodal probability density functions (pdfs). b The pdfs for manic and depressive symptoms did not deviate significantly
from unimodality, where significance is a mean P-value that dips below the solid line, which mark 5th quantiles for the mean of N uniform random
variables between 0 and 1 with N = 178 for the bimonthly dataset
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between sequences of weekly depressive scores and
sequences sampled from our model (P̂iii = 0.31). Agree-
ment between model and data was also found for the
other two models in the case of sequences of weekly
depressive scores (P̂iii>0:12) and for the Cox-Ingersoll-
Ross model in the case of sequences of weekly manic
scores P̂iii ¼ 0:22, but not for the Ornstein-Uhlenbeck
model in the case of sequences of manic depressive scores
(P̂iii ¼7e-4). Overall, the affective instability model best
explained the data.
Note that our affective instability model has only one

stable state, and so, its density function and transition
distributions are both unimodal. For a model with mul-
tiple stable states, an individual’s mood conditional on a
particular starting value would spend more time around
certain mood values relative to nearby scores (similar to
its density function), which manifests as multiple modes
in its transition distributions. Not being able to reject

specific unimodal density functions and unimodal tran-
sition distributions for our datasets provides further evi-
dence against a multistable assumption.

An affective instability model
Motivated by the empirical results, we describe mood as

a two-dimensional random process represented by a
depressive variable Dt and manic variable Mt. These
variables take positive values ranging from zero for no
symptoms, to a larger number for minor symptoms, to an
even higher number for severe symptoms; and satisfy the
stochastic differential equation (SDE) model:

dDt ¼ ad
bd
Dt

� Dt

� �
dt þ ffiffiffiffiffiffiffiffi

2ad
p ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ρ2
p

dVt þ ρdWt

� �

dMt ¼ am
bm
Mt

�Mt

� �
dt þ ffiffiffiffiffiffiffiffi

2ad
p

dWt

where ad; am; bd; bm are positive parameters, ρ 2 ½�1; 1�,
and dVt and dWt are independent Wiener processes. A
Wiener process, also known as Brownian motion, is the
most standard way to mathematically model a continuous
timecourse that is noisy. Lastly, mood variables are related
to particular survey scores through scaling: sdDt and smMt,
for positive parameters sm and sd.

From the model, we can see that mood is inclined
towards a baseline/normal level, represented by a single
asymptotically stable point ð ffiffiffiffiffi

bd
p

;
ffiffiffiffiffiffi
bm

p Þ in the absence of
noise (Fig. 5a), but reaches pathological levels in certain
individuals for one of two reasons. Either the baseline
level is simply too close to pathological levels, so that even
small fluctuations can bring mood into pathological levels.
Or, mood is particularly sensitive and reactive to (ran-
dom/unobserved) events, e.g. stressful life events such as
job loss. Simply put, clinical course in BP arises from a
weaker ability to keep mood within normal ranges. Note
that the model does not impose any boundaries between
mood states, such as in a multistable model (Fig. 5a).
Without a natural boundary, sub-threshold symptoms, i.e.
those insufficient in number or criteria to constitute a
mood episode, have increased importance. As in actual
individuals with BP, sub-threshold symptoms in the
model persist even when DSM mood episodes have long
subsided, and persons can spend upwards of half their
time with sub-threshold symptoms27.
The model can be personalized to an individual through

parameter choices. Parameters bd and bm influence the
overall severity of mood (Fig. 5b). Higher values of bd
captures an individual that spends more time with
depressive symptoms and has longer depressive episodes.
Higher values of bm has an analogous effect on manic
symptoms. Parameters ad and am control the speed at
which symptoms fluctuate (Fig. 5c), where higher values
of ad or am lead to shorter mood episodes to reflect a

Fig. 4 Testing the affective instability model. Goodness-of-fit tests
were used to see if certain models could explain actual mood data as
well as simulated data from the model. Actual and simulated data
were fit to density functions and transition distribution functions
associated with the affective instability model and two other popular
models, an Orstein-Uhlenbeck and Cox-Ingersoll-Ross model. Except
for density functions of bimonthly depressive symptoms, we found no
significant differences between actual mood data and data simulated
from the affective instability model. Significance is a mean P-value that
dips below the dashed lines, which mark 5th quantiles for the mean of
N uniform random variables between 0 and 1 with N = 178 for the
bimonthly dataset and N = 15 for the weekly dataset
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rapid-cycler. The parameter ad is dimensional compared
to the current definition of rapid-cycling, which as a
categorical variable may impose an artificial boundary
between patients28–30. Parameter ρ controls the pre-
valence of mixed states, ranging from ρ=−1 to 1 for
manic symptoms that oppose or cooperate with depres-
sive symptoms, respectively. ρ=−1 would indicate that
manic and depressive symptoms are not correlated. Lastly,
sd and sm determine how mood translates into external
observations, capturing, for example, variation in how
mood is measured between surveys, clinicians, and/or
demographic groups (gender, culture).
Although we focus on BP, there is no assumption in the

model that excludes it from describing anyone’s mood. By
adjusting parameters, we can theoretically capture mood
courses that describe not only bipolar I, bipolar II and
rapid-cycling, but also disorders such as major depression
(low bm and high bd) as well as healthy individuals (Fig.

5d). Major mood disorders can thus be conceptualized
with boundaries that are more fluid than those recognized
in the DSM.

Discussion
Mathematical modeling provides an important frame-

work for understanding human behavior. Borbély’s two-
process model has formed the basis for how many
researchers reason about sleep-wake dynamics31, and
Daan’s evening-morning oscillator model likewise has led
to an important understanding of how behavior can be
consolidated in a 24-h day32. Both papers remain high
cited, and many similar high-level models are used to
understand physiological processes. Based on the success
of these previous models, a framework for mood
dynamics in BP could be impactful for the field.
A major challenge in the study of BP is how to properly

classify patients, which has led to much debate about the

Fig. 5 Understanding the affective instability model. a Ignoring noise and external perturbations, mood in the affective instability model tends to
one stable state, regardless of its starting value. In a multistable model, mood tends to stay high or low, depending on its starting value, and in a
rhythmic model, mood tends to oscillate between high or low values. b, c The affective instability model can be customized to an individual with
longer depressive episodes and shorter non-episodic states by increasing bd (dimensionless) and shorter depressive and non-episodic states by
increasing ad (in units 1 per 1000 days). Changes to bd, am have an analogous effect on manic symptoms. Unless otherwise specified, ad = 2 per
1000 days, bd = 5, am = 3 per 1000 days, bm = 5, ρ = 0. d A caricature of how the affective instability model does not impose rigid boundaries between
diagnoses. Continuous changes to bmambd and/or ad can recover a mood course that is more characteristic of an individual with either bipolar I,
bipolar II, rapid-cycling, major depressive disorder, or none of these disorders
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DSM-5. A recent study has shown that bipolar I patients
can be fit to a mathematical model33, and that the para-
meters of these fits can be classified into three groups with
validated clinical outcomes. Our model has only seven
parameters, which can easily be identified from patient
data. As it is a framework that is validated against data, it
should provide an important diagnostic tool for bipolar
subjects.
We examined hypotheses about mood course in a

dataset of manic and depressive surveys from 178 BP
subjects followed for a minimum of four years. Patient-
level statistics were combined to formally test these
hypotheses at the patient-level. This analysis finds little
evidence in our data of one-dimensionality, rhythmicity,
or multistability, but finds support for an affectivity
instability model. Data with higher temporal resolution,
longer sampling periods, and additional patients could
provide additional testing of modeling hypotheses. For
example, one could test the possibility that mood should
be modeled differently during different pharmacological
treatments, or as the disease progresses. The bimonthly
dataset was self-reported, and hence, subject to reporting
bias. The weekly dataset, for example, was based on
trained interviewer assessments and reinforced conclu-
sions from the bimonthly dataset. Our model also
assumes mood is Markovian, meaning that the current
mood state is all that is needed to predict future mood
and parameters do not vary with time. Future research
might also incorporate events, such as a job loss, into the
model as was done by Steinacher and Wright11.
Three additional modeling frameworks have also been

proposed, but for which further testing does not appear to
be needed. Mood was proposed to be generated by a
mathematical chaotic system34, which is difficult to dis-
tinguish from randomness with discrete samples35.
Nevertheless, previous testing of this hypothesis has
questioned chaos’ role in mood disorders36–38. Other
models are built just the rate of transitions between mood
states rather than mood on a dimensional scale. Although
they do not fulfill the modeling goals of this manuscript,
such models are useful for classifying patients33. “Kind-
ling” models of Bipolar have also been proposed, but the
kindling hypothesis also has come into question39.
The affective instability model provides an alternative

hypothesis for how biological processes could drive mood
in BP, namely, manic and depressive symptoms could be
driven by a two-dimensional process that is weakly
regulated. Mania and depression are separately regulated,
but may respond to some similar unpredictable or ran-
dom inputs or environmental factors. Other random
models of mood in BP have been presented where time
and mood can be discrete or continuous4,11,13,20,33,36,40–42.
A continuous-time continuous-state model, such as the
one introduced here and those presented in Bonsall et al.4

and Steinacher and Wright11 permits data at regular or
irregular time intervals and from different surveys. Ran-
dom models, as the foundation of statistical inference, are
relatively easy to personalize and validate with data,
whereas inference is less common for chaotic models.
A major benefit of the affective instability model is that

it provides a quantitative and dimensional phenotype for
studying BP. Not only is mood characterized on both a
manic and depressive scale, but each of the model para-
meters could be viewed as a characterization of an indi-
vidual’s illness. Dimensional constructs that capture both
pathological and non-pathological behavior are empha-
sized in RDoC from the National Institute of Mental
Health43, since current classification categories are
believed to impose artificial boundaries between indivi-
duals. Future research could use the affective instability
model by customizing model parameters to any indivi-
dual’s behavior and then utilizing these parameters to
explain variation in behavior between subjects. The
resulting seven parameters also provide a meaningful way
for a clinician to assess clinical courses, e.g. assess the
tendency for mixed episodes. With roles in BP’s patho-
physiology1, potential candidates for the biological pro-
cesses that could lead to an affective instability model
would be the serotonergic and dopaminergic systems
providing an important potential link to physiology.

Acknowledgements
This research was supported by Heinz C. Prechter Bipolar Research Fund at the
University of Michigan Depression Center; the Richard Tam Foundation;
Human Frontiers of Science Program Grant (RPG 24/2012); and Health and
Human Services, Department of National Institutes of Health (R34 MH100404-
03; K01 MH112876).

Author details
1Department of Biostatistics and Medical Informatics, University of Wisconsin,
Madison, WI 53705, USA. 2Department of Bioengineering, Rice University,
Houston, TX 77030, USA. 3Department of Psychiatry, University of Michigan,
Ann Arbor, MI 48105, USA. 4Department of Mathematics, University of
Michigan, Ann Arbor, MI 48105, USA. 5Department of Computational Medicine
and Bioinformatics, University of Michigan, Ann Arbor, MI 48105, USA

Conflict of interest
The authors declare that they have no conflict of interest.

Publisher's note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Supplementary Information accompanies this paper at (https://doi.org/
10.1038/s41398-017-0084-4).

Received: 1 November 2017 Accepted: 13 November 2017

References
1. Goodwin, F., Jamison, K. & Ghaemi, S. Manic-depressive illness: bipolar disorders

and recurrent depression. 2nd ed, (Oxford University Press, New York, NY, 2007).

Cochran et al. Translational Psychiatry  (2018) 8:36 Page 9 of 10

https://doi.org/10.1038/s41398-017-0084-4
https://doi.org/10.1038/s41398-017-0084-4


2. Merikangas, K. et al. Prevalence and correlates of bipolar spectrum disorder in
the world mental health survey initiative. Arch. Gen. Psychiatry 68, 241–251
(2011).

3. American Pyschiatric Association. Diagnostic and Statistical Manual of Mental
Disorders 5th edn. (Arlington, VA, 2013).

4. Bonsall, M., Geddes, J., Goodwin, G. & Holmes, E. Bipolar disorder dynamics:
affective instabilities, relaxation oscillations and noise. J. R. Soc. Interface 12,
20150670 (2015).

5. Daugherty, D. et al. Mathematical models of bipolar disorder. Commun.
Nonlinear Sci. 14, 2897–2908 (2009).

6. Frank, F. A limit cycle oscillator model for cycling mood variations of bipolar
disorder patients derived from cellular biochemical reaction equations.
Commun. Nonlinear Sci. 18, 2107–2119 (2013).

7. Goldbeter, A. A model for the dynamics of bipolar disorders. Prog. Biophys.
Mol. Bio. 105, 119–127 (2011).

8. Goldbeter, A. Origin of cyclicity in bipolar disorders: a computational
approach. Pharmacopsychiatry 46, S44–S52 (2013).

9. Nana, L. Bifurcation analysis of parametrically excited bipolar disorder model.
Commun. Nonlinear Sci. 14, 351–360 (2009).

10. Hadaeghi, F., Golpayegani, M. & Murray, G. Towards a complex system
understanding of bipolar disorder: a map based model of a complex win-
nerless competition. J. Theor. Biol. 376, 74–81 (2015).

11. Steinacher, A. & Wright, K. Relating the bipolar spectrum to dysregulatio of
behavioural activation: a perspective from dynamical modelling. PLoS. ONE 8,
e63345 (2013).

12. Bystritsky, A., Nierenberg, A., Feusner, J. & Rabinovich, M. Computational non-
linear dynamical psychiatry: a new methodological paradigm for diagnosis
and course of illness. J. Psychiatr. Res. 46, 428–435 (2012).

13. Bonsall, M., Wallace-Hadrill, S., Geddes, J., Goodwin, G. & Holmes, E. Nonlinear
time-series approaches in characterizing mood stability and mood instability
in bipolar disorder. Proc. Biol. Sci. 279, 916–924 (2012).

14. Langenecker, S., Saunders, E., Kade, A., Ransom, M. & McInnis, M. Intermediate:
cognitive phenotypes in bipolar disorder. J. Affect. Disord. 122, 285–293 (2010).

15. Altman, E., Hedeker, D., Peterson, J. & Davis, J. The Altman Self-Rating Mania
Scale. Biol. Psychiatry 42, 948–955 (1997).

16. Kroenke, K., Spitzer, R. & Williams, J. The PHQ-9: validity of a brief depression
severity measure. J. General. Intern. Med. 16, 606–613 (2001).

17. Young, R., Biggs, J., Ziegler, V. & Meyer, D. A rating scale for mania: reliability,
validity and sensitivity. Br. J. Psychiatry.: J. Ment. Sci. 133, 429–435 (1978).

18. Hamilton, M. A rating scale for depression. J. Neurol. Neurosurg. Psychiatry 23,
56–62 (1960).

19. Thomson, D. Spectrum estimation and harmonic-analysis. P IEEE 70,
1055–1096 (1982).

20. Cochran A. L., Schultz A., McInnis M. & Forger D. A Comparison of Mathe-
matical Models of Mood in Bipolar Disorder. (eds Érdi, P., Bhattacharya, B. S. &
Cochran, A. L.) Computational Neurology and Psychiatry, (Springer International
Publishing, 2017. p. 315–341).

21. Hartigan, J. & Hartigan, P. The Dip Test of Unimodality. Ann. Stat. 13, 70–84
(1985).

22. Ait-Sahalia, Y., Fan, J. & Peng, H. Nonparametric transition-based tests for jump
diffusions. J. Am. Stat. Assoc. 104, 1102–1116 (2009).

23. Fan, J. A selective overview of nonparametric methods in financial econo-
metrics. Stat. Sci. 20, 317–337 (2005).

24. Iacus, S. Simulation and Inference for Stochastic Differential Equations: with R
Examples. (Springer, New York, NY, 2008).

25. Loughin, T. A systematic comparison of methods for combining p-values from
independent tests. Comput. Stat. Data An. 47, 467–485 (2004).

26. Asmussen, S. & Glynn, P. Stochastic Simulation: Algorithms and Analysis Springer
Science & Business Media, New York, NY (2007).

27. Judd, L. et al. The long-term natural history of the weekly symptomatic status
of bipolar I disorder. Arch. Gen. Psychiatry 59, 530–537 (2002).

28. Bauer, M., Beulieu, S., Dunner, D., Lafer, B. & Kupka, R. Rapid cycling bipolar
disorder--diagnostic concepts. Bipolar Disord. 10, 153–162 (2008).

29. Kupka, R. et al. Comparison of rapid-cycling and non-rapid-cycling bipolar
disorder based on prospective mood ratings in 539 outpatients. Am. J. Psy-
chiatry 162, 1273–1280 (2005).

30. Schneck, C. et al. The prospective course of rapid-cycling bipolar disorder:
findings from the STEP-BD. Am. J. Psychiatry 165, 370–377 (2008).

31. Borbély, A. A. A two process model of sleep regulation. Hum. Neurobiol. 1,
195–204 (1982).

32. Pittendrigh, C. & Daan, S. A functional analysis of circadian pacemakers in
nocturnal rodents. J. Comp. Physiol. 106, 333–355 (1975).

33. Cochran, A., McInnis, M. & Forger, D. Data-driven classification of
bipolar I disorder from longitudinal course of mood. Transl. Psychiatry 6, e912
(2016).

34. Gottschalk, A., Bauer, M. & Whybrow, P. Evidence of chaotic mood variation in
bipolar disorder. Arch. Gen. Psychiatry 52, 947–959 (1995).

35. Werndl, C. Are deterministic descriptions and indeterministic descriptions
observationally equivalent? Stud. Hist. Philos. Mp. 40, 232–242 (2009).

36. Moore, P., Little, M., McSharry, P., Goodwin, G. & Geddes, J. Mood dynamics in
bipolar disorder. Int. J. Bipolar Disord. 2, 11 (2014).

37. van der Werf, S. et al. Major depressive episodes and randommood. Arch. Gen.
Psychiatry 63, 509–518 (2006).

38. Krystal, A. & Greenside, H. Low-dimensional chaos in bipolar disorder? Arch.
Gen. Psychiatry 55, 275 (1998).

39. Bender, R. & Alloy, L. Life stress and kindling in bipolar disorder: review of the
evidence and integration with emerging biopsychosocial theories. Clin. Psy-
chol. Rev. 31, 383–398 (2011).

40. Fan, J. On Markov and Hidden Markov Models with Applications to Trajectories
University of Pittsburgh, Pittsburgh, PA (2014).

41. Lopez, A. Markov Models for Longitudinal Course of Youth Bipolar Disorder
University of Pittsburgh, Pittsburgh, PA (2014).

42. Moore, P., Little, M., McSharry, P., Geddes, J. & Goodwin, G.
Forecasting depression in bipolar disorder. IEEE Trans. Biomed. Eng. 59,
2801–2807 (2012).

43. Insel, T. et al. Research domain criteria (RDoC): toward a new classification
framework for research on mental disorders. Am. J. Psychiatry 167, 748–751
(2010).

Cochran et al. Translational Psychiatry  (2018) 8:36 Page 10 of 10


	Testing frameworks for personalizing bipolar disorder
	Introduction
	Materials and methods
	Data
	Statistical approach
	Patient-level statistics
	Testing a one-dimensional hypothesis
	Testing a rhythmic hypothesis
	Testing a multistable assumption
	Testing our affective instability model

	Population-level statistics
	Parametric study

	Results
	Testing conventional hypotheses
	One-dimensional
	Rhythmic
	Multistable

	An alternative hypothesis for mood in BP
	An affective instability model

	Discussion
	ACKNOWLEDGMENTS




